1. Núñez, R. E. (2017). Is there really an evolved capacity for number?. Trends in cognitive sciences21(6), 409-424.

  2. Núñez, R., & Cooperrider, K. (2013). The tangle of space and time in human cognition. Trends in cognitive sciences17(5), 220-229.

  3. Núñez, R. E., & Sweetser, E. (2006). With the future behind them: Convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cognitive science30(3), 401-450.

  4. Núñez, R. E. (2005). Creating mathematical infinities: Metaphor, blending, and the beauty of transfinite cardinals. Journal of Pragmatics37(10), 1717-1741.

  5. Marghetis, T., & Núñez, R. (2013). The motion behind the symbols: A vital role for dynamism in the conceptualization of limits and continuity in expert mathematics. Topics in cognitive science5(2), 299-316.

  6. Núñez, R. E. (2011). No innate number line in the human brain. Journal of Cross-Cultural Psychology42(4), 651-668.

  7. Núñez, R. (2006). Do real numbers really move? Language, thought, and gesture: The embodied cognitive foundations of mathematics. In 18 Unconventional essays on the nature of mathematics (pp. 160-181). New York, NY: Springer New York.

  8. Núñez, R., Cooperrider, K., & Wassmann, J. (2012). Number concepts without number lines in an indigenous group of Papua New Guinea. PLoS One7(4), e35662.

  9. Núñez, R., Cooperrider, K., Doan, D., & Wassmann, J. (2012). Contours of time: Topographic construals of past, present, and future in the Yupno valley of Papua New Guinea.cognition124(1), 25-35.

  10. Núñez, R. (2009). Numbers and arithmetic: Neither hardwired nor out there. Biological Theory4, 68-83.

  11. Cooperrider, K., Marghetis, T., & Núñez, R. (2017). Where does the ordered line come from? Evidence from a culture of Papua New Guinea. Psychological science28(5), 599-608.

  12. Núñez, R. (2007). The cognitive science of mathematics: why is it relevant for mathematics education?. In Foundations for the future in mathematics education (pp. 127-154). Routledge.

  13. Núñez, R., Doan, D., & Nikoulina, A. (2011). Squeezing, striking, and vocalizing: Is number representation fundamentally spatial?. Cognition120(2), 225-235.

     

  14. Relaford-Doyle, J., & Núñez, R. (2018). Beyond Peano: Looking into the unnaturalness of natural numbers. In Naturalizing Logico-Mathematical Knowledge (pp. 234-251). Routledge.

  15. Relaford-Doyle, J., & Núñez, R. (2019). Can a picture prove a theorem? Using empirical methods to investigate visual proofs by induction. Advances in Experimental Philosophy of Logic and Mathematics, 95.

  16. Parkinson-Coombs, O., & Núñez, R. (2023). Realism and the point at infinity: The end of the line?. Synthese202(3), 81.

  17. Relaford-Doyle, J., & Núñez, R. (2021). Characterizing students’ conceptual difficulties with mathematical induction using visual proofs. International Journal of Research in Undergraduate Mathematics Education7(1), 1-20.