Núñez, R. E. (2017). Is there really an evolved capacity for number?. Trends in cognitive sciences, 21(6), 409-424.
Núñez, R., & Cooperrider, K. (2013). The tangle of space and time in human cognition. Trends in cognitive sciences, 17(5), 220-229.
Núñez, R. E., & Sweetser, E. (2006). With the future behind them: Convergent evidence from Aymara language and gesture in the crosslinguistic comparison of spatial construals of time. Cognitive science, 30(3), 401-450.
Núñez, R. E. (2005). Creating mathematical infinities: Metaphor, blending, and the beauty of transfinite cardinals. Journal of Pragmatics, 37(10), 1717-1741.
Marghetis, T., & Núñez, R. (2013). The motion behind the symbols: A vital role for dynamism in the conceptualization of limits and continuity in expert mathematics. Topics in cognitive science, 5(2), 299-316.
Núñez, R. E. (2011). No innate number line in the human brain. Journal of Cross-Cultural Psychology, 42(4), 651-668.
Núñez, R., Cooperrider, K., & Wassmann, J. (2012). Number concepts without number lines in an indigenous group of Papua New Guinea. PLoS One, 7(4), e35662.
Núñez, R., Cooperrider, K., Doan, D., & Wassmann, J. (2012). Contours of time: Topographic construals of past, present, and future in the Yupno valley of Papua New Guinea.cognition, 124(1), 25-35.
Núñez, R. (2009). Numbers and arithmetic: Neither hardwired nor out there. Biological Theory, 4, 68-83.
Cooperrider, K., Marghetis, T., & Núñez, R. (2017). Where does the ordered line come from? Evidence from a culture of Papua New Guinea. Psychological science, 28(5), 599-608.
Núñez, R. (2007). The cognitive science of mathematics: why is it relevant for mathematics education?. In Foundations for the future in mathematics education (pp. 127-154). Routledge.
Núñez, R., Doan, D., & Nikoulina, A. (2011). Squeezing, striking, and vocalizing: Is number representation fundamentally spatial?. Cognition, 120(2), 225-235.
Relaford-Doyle, J., & Núñez, R. (2018). Beyond Peano: Looking into the unnaturalness of natural numbers. In Naturalizing Logico-Mathematical Knowledge (pp. 234-251). Routledge.
Relaford-Doyle, J., & Núñez, R. (2019). Can a picture prove a theorem? Using empirical methods to investigate visual proofs by induction. Advances in Experimental Philosophy of Logic and Mathematics, 95.
Parkinson-Coombs, O., & Núñez, R. (2023). Realism and the point at infinity: The end of the line?. Synthese, 202(3), 81.
Relaford-Doyle, J., & Núñez, R. (2021). Characterizing students’ conceptual difficulties with mathematical induction using visual proofs. International Journal of Research in Undergraduate Mathematics Education, 7(1), 1-20.